

Welcome to Porcupy

Welcome to Porcupy’s documentation.
Porcupy let’s you compile a subset of Python to Yozhiks in Quake II [http://gegames.org] scenarios.

Check Introduction to find out about Yozhiks in Quake II and its scenarios.
Go to Quickstart to learn how to install and write your first scenario in Porcupy.

	Introduction

	Quickstart
	Installation

	First scenario

	Reference
	Identifiers and assignment

	Data types

	Compound statements

	Built-in functions

	Game objects

	Constants

Indices and tables

	Index

	Search Page

Introduction

Yozhiks in Quake II [http://gegames.org/] is video game developed by Nick Koleda [http://twitter.com/zyaleniyeg]
between 2001-2006.
It’s a 2D side-scrolling demake of Quake II where player controls a yozhik (hedgehog) battling other yozhiks.
It features single player with bots, hot seat, LAN and Internet multiplayer games with following game modes: Deathmatch,
Team Deathmatch, Capture the Flag, Points, Scenario.
There is a map editor to create and edit maps.

The game gained a short-lived fan following in Russia and influenced 3d[Power] to create NFK [http://needforkill.ru/].

More interestingly it features a tiny custom-made programming language to write scenarios attached to a map.
With this language, map designer is able to create scripted events, spawn and control bots, access and modify the state
of game objects like doors, buttons, and other players.

However, the code is pretty arcane:

e1p < 1 (p1z ~5 p1z p1z+1 e1b ^1 e1p 125)

It reads like this: if first yozhik has less health points than 1, then spawn him in a random spawn-point between 1 and
5, and give him 125 health points.

As you can see, reading and writing such code is not an easy feat: arbitrary one-letter abbreviations of methods and
properties, unnamed variables, flow control consists of one-level if statement and goto statement.

Head over to Quickstart and learn how to install and write scenarios in Porcupy.

Quickstart

Installation

First of all, you must visit Yozhiks in Quake II [http://gegames.org/] and download the game [http://octagram.name/pub/gegames/egiki.1.06.rar.exe] and map editor [http://octagram.name/pub/gegames/egiki.editor.exe].

Make sure you have Python 3, then use pip to acquire the package:

pip3 install 'git+https://github.com/Perlence/porcupy#egg=porcupy'

First scenario

Let’s consider rewriting an example from Introduction in Porcupy:

PLAYER = yozhiks[0]

if PLAYER.health < 1:
 PLAYER.spawn(randint(1, 5))
 PLAYER.health = 125

List yozhiks is a zero-indexed list of all yozhiks in the game and each of them has attributes like
health and weapon, and methods like spawn().

Names written in upper case are considered constants, so, roughly speaking, each next occurrence of PLAYER after first
line will be replaced by yozhiks[0].

New built-in function randint() returns random integer in range [a, b], including both end points.

Let’s save the scenario in a file, e.g. handicap_spawn.py, and see what Porcupy compiler will produce:

porcupy -i handicap_spawn.py

The result is:

e1p >= 1 (g1z) p1z ~5 p2z p1z+1 e1b ^2 e1p 125 :1

It looks a lot like the original example, but you can notice new words like g1z and :1 — these are goto
statement and goto label respectively.

Now, the scenario on it’s own is useless unless it’s bundled with a map.
Go to directory where you installed Yozhiks in Quake II and the map editor.
Start red_egiks.exe, open file MAPS/ArenaDM.egm, change the name of map in Info dialog, and save it to
MAPS/ArenaDM2.egm.

Now we can compile and attach the Porcupy scenario to the map:

porcupy -i handicap_spawn.py -a ArenaDM2.egm

Check if scenario works properly by loading the map in Yozhiks in Quake II and proceed to Reference.

Reference

Porcupy compiler uses Python’s ast [https://docs.python.org/3/library/ast.html] module to parse Porcupy scenarios.
Porcupy aims to resemble Python as close as possible, with some cues taken from Go.
But it’s not feasible to implement each and every one of Python language features.

Here’s a list of Python language features not supported in Porcupy:

	The import system

	Expressions:
	Await expression

	Power operator

	Shifting operations

	Binary bitwise operations

	Lambdas

	Keywords in function calls

	list, set, dict, and generator comprehensions

	Simple statements:
	The assert statement

	The del statement

	The return statement

	The yield statement

	The raise statement

	The import statement

	The global statement

	The nonlocal statement

	Compound statements:
	The try statement

	The with statement

	Function definitions

	Class definitions

	Coroutines

Identifiers and assignment

Unlike Python, Porcupy introduces a distinction between variables and constants.
Constants are not assigned to in-game variables, like p1z, the value of constant is stored only in compiler’s memory.
To define a constant, write its name in upper case:

PUNCH_VELOCITY = 15

Note

Because of the way the game parses floating point numbers, and because of the way Porcupy tries to alleviate it,
defining floating point constants is not allowed.

All other names are considered variable names:

number = 0

Chained assignment and tuple unpacking are supported:

x = y = 0
a, b = 1, 2

Note

Although present in game, string variables are broken, and it’s not possible to set a string to a variable.
At the same time, it’s still possible to define a string constant.

Data types

Porcupy supports the following data types:

	Numbers

	Integers

Booleans

Floating point numbers

	Sequences

	All sequences provide a way to get/set an item by index, query the length and capacity.

	Immutable sequences

	
	Strings

	Can only be used in constants and as print(), print_at(), and load_map() arguments.
Method format is supported:

print('{} {}'.format(yegiks[0].health, yegiks[0].armor)

	Range

	See the range built-in.

	Reversed

	See the reversed built-in.

	Mutable sequences

	
	Lists

	The items of a list are of the same type and the number of items is constant and known at compile-time:

x = [0, 1, 2, 3, 4]

No original list methods are implemented in Porcupy lists, it can only be used to store a sequence of numbers, get
and set them by index:

x[0] = 10
print(x[0])
print(len(x))

Note

Negative indices are not supported.

	Slices

	Slice is a variable-length sequence with defined maximum capacity, backed by a list.
Essentially, slice is a triple of values: address of first element, length of slice, capacity of slice.

x = [0, 0, 0, 0, 0] # a list of length 5
s = x[:] # a slice of list *x*, length 5, capacity 5
s = x[1:] # a slice of list *x*, length 4, capacity 4
s = x[:0] # a slice of list *x*, length 0, capacity 5
s = x[1:3] # a slice of list *x*, length 3, capacity 4

Note

Slice step is not supported.

There’s a very useful shorthand notation with slice().

It’s possible to slice other slices:

x = slice(int, 5)
y = x[:3]

Slices can be appended to:

x = slice(int, 0, 5)
x.append(4)

Warning

There’s currently no mechanism to prevent user from appending an item to a “full” slice, so be sure to check
length and capacity of slice before appending yourself.

Compound statements

Only the following compound statements from Python are supported:

	The if statement

	The while statement

	The for statement

Each of them supports optional else clause.

The for statement differs a bit from the original.
It can be used to iterate sequences:

items = [10, 20, 30, 40]
for item in items:
 print(item) # prints '10', '20', '30', '40', one on each line

But it’s also possible to access item’s index without the enumerate function:

items = [10, 20, 30, 40]
for i, item in items:
 print(i, item) # prints '0 10', '1 20', and so on

Built-in functions

	
cap(sequence) → int

	Return the capacity of a given sequence.

	Parameters:	sequence – an instance of list, slice, range, or reversed.

	
len(sequence) → int

	Return the length of a given sequence.

	Parameters:	sequence – a list, slice, range, or reversed.

	
load_map(map_name)

	Load the given map.

Note

This function works only in Yozhiks in Quake II v1.07.

	
print(*values)

	Print values as a message in the top-left corner of the screen, separated by a single space.

	
print_at(x, y, duration, *values)

	Print values in given point on screen for duration game ticks, separated by a single space.

	Parameters:	
	x (int) – x coordinate of message.

	y (int) – y coordinate of message.

	duration (int) – number of game ticks the message will be visible.

	values – parts of message to be printed.

Note

Only 20 such messages can be shown at a given time.

	
randint(a, b) → int

	Return a random integer N such that a <= N <= b.

	
class range(stop) → range object

	

	
class range(start, stop[, step]) → range object

	Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step.

	
class reversed(sequence) → reversed object

	Return a reverse sequence without allocating any in-game variables.

	
set_color(r, g, b)

	Set color of print_at() messages.

	
slice(type, len, cap=None) → slice object

	Create a slice of capacity cap and len zero elements of given type.

	Parameters:	
	type – int, bool, or float.

	len (int) – length of slice to make.

	cap (int) – capacity of slice to make, defaults to len.

x = slice(int, 5) # equivalent to [0, 0, 0, 0, 0][:]
x = slice(int, 1, 5) # equivalent to [0, 0, 0, 0, 0][:1]
y = slice(bool, 3) # equivalent to [False, False, False][:]
z = slice(float, 5) # equivalent to [.0, .0, .0, .0, .0][:]

	
spawn_sheep(start, finish)

	Spawn a sheep in point start and tell it to go to point finish.

	Parameters:	
	start (Point) – point where sheeps spawns.

	finish (Point) – point where sheep is supposed to go.

Note

Although point finish is required, only green sheeps will go there, other sheeps will always follow player.

Game objects

Porcupy provides access to many built-in objects to interact with the game.

	
bots

	A list of 10 Bot instances.

	
buttons

	A list of 50 Button instances.

	
doors

	A list of 50 Door instances.

	
points

	A list of 100 Point instances.

	
system

	A single System instance.

	
timers

	A list of 100 Timer instances.
First timer timers[0] is always started with the game, so if it’s necessary to set initial variables and game
state, use this approach:

if timers[0].value == 1:
 # Initialize here
 pass

	
viewport

	A single Viewport instance.

	
yozhiks

	A list of 10 Yozhik instances.
First yozhik yozhiks[0] is player himself.

Note

All classes below cannot be instantiated in scenario, and, in fact, they’re not in the scope.

	
class Bot

	
	
ai

	(bool) – should bot function on its own.

	
can_see_target

	(bool, read-only).

	
goto

	(Point) – make bot go to given Point.

	
level

	(int) – a level of the bot, see list of bot level constants for possible values.

	
point

	(Point, read-only) – a Point where bot is now.

	
target

	(Yozhik) – attack target of the bot.

	
class Button

	
	
is_pressed

	(bool, read-only).

	
press()

	

	
class Door

	
	
state

	(int, read-only) – see list of door state constants for possible values.

	
open()

	

	
close()

	

	
class Point

	Points are set in the map editor, and they are primarily used to tell a bot where to go.
They can also be used to easily mark a location on map to serve as a trigger, or to display a message with
print_at().

	
pos_x

	(int) – x coordinate of the point.

	
pos_y

	(int) – y coordinate of the point.

	
class System

	
	
bots

	(int) – number of bots.

	
color

	(int) – color of print_at() messages.

It’s a triple of 8-bit integers packed in one: blue*65536 + green*256 + red.
It’s easier to use set_color() instead of setting color value to this attribute.

Default color is 48128, or rgb(0, 188, 0).

	
frag_limit

	(int) – see list of frag limit constants for possible values.

	
game_mode

	(int, read-only) – current game mode, see list of games modes for possible values.

	
class Timer

	A timer object that counts game ticks.

One game tick is roughly 1/50 of a second.

	
enabled

	(bool) – is the timer ticking.

	
value

	(int) – how much ticks did the timer count.

	
start()

	

	
stop()

	

	
class Viewport

	Viewport object holds the location of top-left game screen corner in relation to top-left map corner.

	
pos_x

	(int, read-only) – x coordinate of top-left screen corner.

	
pos_y

	(int, read-only) – y coordinate of top-left screen corner.

	
class Yozhik

	
	
ammo

	(int) – amount of ammo for current weapon.

	
armor

	(int) – armor points.

	
frags

	(int) – number of frags.

	
is_weapon_in_inventory

	(bool) – setting is_weapon_in_inventory to True places current weapon in yozhik’s inventory.

	
health

	(int) – health points.

	
pos_x

	(float) – x coordinate of yozhik’s position.

	
pos_y

	(float) – y coordinate of yozhik’s position.

	
speed_x

	(float) – x coordinate of yozhik’s speed vector.

	
speed_y

	(float) – y coordinate of yozhik’s speed vector.

	
team

	(int) – number of team.

	
view_angle

	(int) – a value in range [0, 127], when yozhik looks up it’s 0, when he looks straight to the right
or left it’s 64, when he looks down it’s 127.

	
weapon

	(int) – current weapon, see list of weapon constants.
Setting value to this attribute makes yozhik switch to the weapon, but does not place it in his inventory.
If he didn’t have it before and switches back, the weapon will be gone, unless is_weapon_in_inventory was set.

	
spawn(point: int)

	Spawn yozhik in the given spawn-point.

Spawn points are enumerated starting at 1, from top to bottom, left to right:

[image: _images/spawn-points.png]

Constants

	Weapons:

	
	
W_BFG10K(0)

	

	
W_BLASTER(1)

	

	
W_SHOTGUN(2)

	

	
W_SUPER_SHOTGUN(3)

	

	
W_MACHINE_GUN(4)

	

	
W_CHAIN_GUN(5)

	

	
W_GRENADE_LAUNCHER(6)

	

	
W_ROCKET_LAUNCHER(7)

	

	
W_HYPERBLASTER(8)

	

	
W_RAILGUN(9)

	

	Door states:

	
	
DS_CLOSED(0)

	

	
DS_OPEN(1)

	

	
DS_OPENING(2)

	

	
DS_CLOSING(3)

	

	Frag limits:

	
	
FL_10(0)

	

	
FL_20(1)

	

	
FL_30(2)

	

	
FL_50(3)

	

	
FL_100(4)

	

	
FL_200(5)

	

	Bot levels:

	
	
BL_VERY_EASY(0)

	

	
BL_EASY(1)

	

	
BL_NORMAL(2)

	

	
BL_HARD(3)

	

	
BL_IMPOSSIBLE(4)

	

	Game modes:

	
	
GM_MULTI_LAN(0)

	

	
GM_MULTI_DUEL(1)

	

	
GM_HOT_SEAT(2)

	

	
GM_MENU(3)

	

	
GM_SINGLE(4)

	

	
GM_SHEEP(5)

	

	
GM_HOT_SEAT_SPLIT(6)

	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Y

A

 	
 	ai (Bot attribute)

 	
 	ammo (Yozhik attribute)

 	armor (Yozhik attribute)

B

 	
 	BL_EASY (built-in variable)

 	BL_HARD (built-in variable)

 	BL_IMPOSSIBLE (built-in variable)

 	BL_NORMAL (built-in variable)

 	BL_VERY_EASY (built-in variable)

 	
 	Bot (built-in class)

 	bots (built-in variable)

 	(System attribute)

 	Button (built-in class)

 	buttons (built-in variable)

C

 	
 	can_see_target (Bot attribute)

 	cap() (built-in function)

 	
 	close() (Door method)

 	color (System attribute)

D

 	
 	Door (built-in class)

 	doors (built-in variable)

 	DS_CLOSED (built-in variable)

 	
 	DS_CLOSING (built-in variable)

 	DS_OPEN (built-in variable)

 	DS_OPENING (built-in variable)

E

 	
 	enabled (Timer attribute)

F

 	
 	FL_10 (built-in variable)

 	FL_100 (built-in variable)

 	FL_20 (built-in variable)

 	FL_200 (built-in variable)

 	
 	FL_30 (built-in variable)

 	FL_50 (built-in variable)

 	frag_limit (System attribute)

 	frags (Yozhik attribute)

G

 	
 	game_mode (System attribute)

 	GM_HOT_SEAT (built-in variable)

 	GM_HOT_SEAT_SPLIT (built-in variable)

 	GM_MENU (built-in variable)

 	
 	GM_MULTI_DUEL (built-in variable)

 	GM_MULTI_LAN (built-in variable)

 	GM_SHEEP (built-in variable)

 	GM_SINGLE (built-in variable)

 	goto (Bot attribute)

H

 	
 	health (Yozhik attribute)

I

 	
 	is_pressed (Button attribute)

 	
 	is_weapon_in_inventory (Yozhik attribute)

L

 	
 	len() (built-in function)

 	
 	level (Bot attribute)

 	load_map() (built-in function)

O

 	
 	open() (Door method)

P

 	
 	point (Bot attribute)

 	Point (built-in class)

 	points (built-in variable)

 	pos_x (Point attribute)

 	(Viewport attribute)

 	(Yozhik attribute)

 	
 	pos_y (Point attribute)

 	(Viewport attribute)

 	(Yozhik attribute)

 	press() (Button method)

 	print() (built-in function)

 	print_at() (built-in function)

R

 	
 	randint() (built-in function)

 	
 	range (built-in class), [1]

 	reversed (built-in class)

S

 	
 	set_color() (built-in function)

 	slice() (built-in function)

 	spawn() (Yozhik method)

 	spawn_sheep() (built-in function)

 	speed_x (Yozhik attribute)

 	
 	speed_y (Yozhik attribute)

 	start() (Timer method)

 	state (Door attribute)

 	stop() (Timer method)

 	System (built-in class)

 	system (built-in variable)

T

 	
 	target (Bot attribute)

 	team (Yozhik attribute)

 	
 	Timer (built-in class)

 	timers (built-in variable)

V

 	
 	value (Timer attribute)

 	view_angle (Yozhik attribute)

 	
 	Viewport (built-in class)

 	viewport (built-in variable)

W

 	
 	W_BFG10K (built-in variable)

 	W_BLASTER (built-in variable)

 	W_CHAIN_GUN (built-in variable)

 	W_GRENADE_LAUNCHER (built-in variable)

 	W_HYPERBLASTER (built-in variable)

 	
 	W_MACHINE_GUN (built-in variable)

 	W_RAILGUN (built-in variable)

 	W_ROCKET_LAUNCHER (built-in variable)

 	W_SHOTGUN (built-in variable)

 	W_SUPER_SHOTGUN (built-in variable)

 	weapon (Yozhik attribute)

Y

 	
 	Yozhik (built-in class)

 	
 	yozhiks (built-in variable)

 nav.xhtml

 Table of Contents

 		Welcome to Porcupy

 		Introduction

 		Quickstart

 		Installation

 		First scenario

 		Reference

 		Identifiers and assignment

 		Data types

 		Compound statements

 		Built-in functions

 		Game objects

 		Constants

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_images/spawn-points.png
Sl
SR LERCT L &
IS EEERERaE
sl nC ol
IS EEERERRE

e N M
T

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

